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Fig. 1: Our simulation environment in Gazebo. (a) Close-up of our robot model (b) Shows top-down view of test run
trajectories on a random forest of cylinders with inset of robot-centric monocular image.(c) Oblique view of forest of cylinders.
(d) Sequence of robot images and yaw commands outputted by the network. The direction and the magnitude of the red
arrows are in accordance with the yaw velocity being executed by our learnt DQN policy.

Abstract—
Obstacle avoidance for micro aerial vehicles is an essential

capability for autonomous flight in cluttered environments,
but is often challenging because limited payload capacity only
permits the use of lightweight sensors like monocular cameras.
We show that Deep Q-learning has the potential to be used
for end-to-end training of obstacle avoidance policies for UAVs,
mapping directly from a stack of monocular images to controls
in a low-textured environment while flying at a constant speed.
We validate our algorithm by testing it on a random forest
of cylinders and comparing it against baseline algorithms, By
training the network over 6,200 self-supervised episodes, we
achieve significantly higher performance than the baseline in
terms of obstacle avoidance success rate and collision-free flight
time. In addition, we released the open-source code of our
simulator to facilitate rapid prototyping of deep RL algorithms
for flying robots. We are currently working towards deploying
our network on a real UAV system. A video of our results is
available at https://goo.gl/w5yDTX

I. INTRODUCTION

Despite numerous advancements in sensor technologies and
motion planning algorithms, navigation of micro unmanned air
vehicles (UAVs) is still a challenging problem due to payload
weight, size, and power constraints [1, 2]. In general there

are three hierarchies of autonomy for the motion planning of
UAVs: a global planner provides with a path or a motion plan
to be followed, a local planner which follows the global plan
and reacts to previously unseen static or dynamic obstacles
either due to limitations of the perception system or obstacle
distribution in the world, and finally, a low level flight
controller that translates the local planner’s output (velocity
or attitude commands) to appropriate motor thrust [3].

An open question is then which level of autonomy, if
any, can leverage machine learning techniques and the
recent advances made by the deep learning community.
We argue that given a prior map of the environment or a
hidden observation obtained using onboard sensors, traditional
planning algorithms coupled [4-7] are sufficient - both in
terms of solution quality and run time - as far as safe,
smooth, time-optimal trajectories with formal guarantees are
concerned. However, issues arise when previously unseen
obstacles, either static or dynamic, show up in the vicinity
of the planned path of the robot, thereby violating the flight
safety criteria. Such edge cases break the global plan, and
call for a fast reactive planner or policy which can measure
the threat of such unseen obstacles implicitly or explicitly,
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and change the motion of the robot so that it can avoid them
immediately. When the reactive planner deems the robot to
be threat-free, it can either return to following the previous
global plan or if need be, replan again from the current state.

Intuitively, the reactive policy is then an ideal application
for learning methods. If we go lower in the stack and directly
learn motor thrusts, it is detrimental to the safety of the flight.
Linking back to the UAV autonomy hierarchy, learning motor
thrusts can result in unstable and unsafe flight due to policy
variance. If we go high up in the stack and aim to solve
motion planning via learning, we face a similar issue in the
robustness of the solutions thus obtained. A reactive avoidance
policy that is used only when there is an imminent thread of
collisions or maintain the vehicle’s safety constraints, is a nice
fit for learning based methods. Such a policy should learn
a direct mapping from sensory input to control commands,
like a direction to fly towards.

Now, a practical constraint for micro UAVs is that their
small payload permits for only lightweight sensors like
monocular cameras. Previous work for monocular image
based obstacle avoidance utilizes domain-specific cues like
optical flow [8], relative size changes [1], and depth-prediction
[9, 10]. However, these methods are face generalization issues,
as explained in the section on related work. On the other
hand, methods leveraging deep convolutional neural networks
are increasingly becoming an essential component in the
pipeline of multiple state of the art approaches for numerous
vision tasks. They have also paved the way for the success
of deep reinforcement learning algorithms, specifically Deep
Q-Networks (DQNs) and their variants, which have shown
impressive results on fully observable 2D Markov Decision
Processes(MDPs)[11]. However, works applying DQNs to
navigation tasks in partially observable 3D scenarios are
scarce, barring those attempting the VizDoom challenge
[12, 13].

In this work, we use DQNs to learn a mapping from a
discrete set of consecutive UAV-centric monocular images to
a discrete set of yaw commands, thereby learning a reactive
policy for obstacle avoidance. Our training environment,
shown in Fig 1, is a forest of low-textured cylinders in a
Gazebo [14] simulation environment while flying at a constant
speed and altitude to reach a goal point. In order to learn an
effective policy, the design of the MDP, especially the reward
function is critical. We design our reward function to capture
two criteria - avoiding crashing into obstacles and maximizing
the minimum distance from obstacles. We take inspiration
from traditional vector field motion planning literature [15]
and design the reward so that the robot learns to avoid the
obstacles as soon as it veers close to them.

Our work has two main contributions: first, application
of Deep Q-Network algorithm to learn a reactive obstacle
avoidance policy for UAVs using only monocular images as
input. To the best of our knowledge, this is the first work
applying DQNs to the field of aerial vehicles. We compare
our approach with baseline policies and model-based methods
for UAV obstacle avoidance. In addition, we provide open
source code for our training environment and micro UAV

simulator as an OpenAI Gym environment, as well as the
DQN implementation. This release can streamline research
in the area of reinforcement learning in the domain of UAVs.

II. RELATED WORK

In this work, we use DQNs to learn a mapping from a
discrete set of consecutive UAV-centric monocular images to
a discrete set of yaw commands, thereby learning a reactive
policy for obstacle avoidance. We will briefly describe works
related to our method.

A. Model-based obstacle avoidance

Navigation with monocular cameras can be tackled by
leveraging domain-specific cues like optical flow [8], rela-
tive size changes, and depth [9, 10], each having its own
advantages and points of failure. Optical flow uses motion
parallax to detect changes in the image, and is of limited use
in frontal camera applications because of the small angles
relative to the frontal direction and expensive computation
[1]. Relative-size changes and depth prediction are dependent
on good texture and lighting conditions.

Mori and Scherer [1] explored relative size change by
comparing SURF features of frontal images, but their ap-
proach requires high-textured environments. Saxena et al.
[9] worked on depth recovery from single images using
supervised learning, and utilize the depth map to train a policy
for ground navigation in simulation and real environments
[16]. Saxena does not provide details on failure cases, but
we argue that the method is highly dependent on texture-
rich environments. A downside of model-based approaches
for reactive policies is that they are hand-tuned for specific
environments, and relative-size changes and depth prediction
are dependent on good texture and lighting conditions.

B. Learning-based navigation

On the context of UAV navigation, there is work published
in the field of supervised learning, reinforcement learning
and policy search.

Gandhi et al. [17] collected a dataset consisting of positive
(obstacle-free flight) and negative (collisions) examples, and
trained a binary convolutional network classifier which
predicts if the drone should fly in a direction or not. Sadeghi
and Levine [18] used a modified neural fitted Q-learning(NFQ)
algorithm to train a policy only in simulation and applied it
to a real robot, using a single monocular image to predict
probability of collision and selecting a collision-free direction
to fly towards. NFQ is less efficient as compared to DQNs
[19] however.

III. APPROACH

In this section we describe our simulation environment,
algorithm, and implementation details.
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Fig. 3: Close up of our quadrotor model in simulation. It
has a static, horizontal, 2D laser scanner, and a monocular
camera attached to the frame.

A. Simulation environment

We use a simulated model of a quadcopter in Gazebo [14]
which is equipped with a camera and a static 2D laser sensor,
as shown in Fig. 3. We attached a laser sensor to our robot
in simulation so as to calculate the ground truth distance of
the nearest obstacle, and give it a reward accordingly. the
forest. It should be noted that the laser scanner is used to
only calculate the instantaneous reward, and is not used for
training. The only sensory input for the DQN are images
from the monocular camera.

Our environment is a forest of randomly placed cylinders,
whose configuration changes at the end of each episode (Fig.
1). We model the navigation task as a deterministic MDP,
which is defined by a state, action, reward, discount tuple
{S,A,R, γ}, where:
S : is a sequence of 4 consecutive camera images, each

84×84 in size. Note that we dowsample the 480×640 camera
image to 84×84.
A : is a set of 9 uniformly separated yaw velocity

commands in the range of [-0.8, 0.8] rad/s (4 anticlockwise,
4 clockwise, and 1 corresponding to zero velocity). Across
all actions, the drone has a constant forward velocity of 1
m/s.
γ : is a constant discount factor of 0.99
R : is the reward. We tailor our reward function to avoid

crashing into obstacles and maximize the minimum distance
from obstacles. A more detailed explanation of the reward
scheme follows:
• Positive reward for flying in free space:

Let the minimum laser reading at a particular instant be
denoted by dobs. If the dobs is above a threshold distance
dneg, then the agent is given a positive reward, rsafe
for each time step.

• Maximize the minimum distance from obstacles:
Let dcrash define a threshold for dobs, below which we
consider that the UAV has crashed. When dneg < dobs <
dcrash, implying that the robot is in the vicinity of an
obstacle, a linearly increasing (in magnitude) negative
reward is given from rneg to rprecrash, as depicted in Fig.

4. This is inspired by the vector field motion planning
literature, where the robot follows a potential function
which has high values near obstacles and low values
near goals.

• High negative reward for crashing: A high negative
crash reward, rcrash is given if dobs < dcrash.
Fig 4 shows the reward scheme for the proximities of a
cylinder. Empirically, we found the following threshold
distances and reward values to work well:

rsafe = 0.25
dneg = 2.0, rneg = 0.0, rprecrash = −5.0
dcrash = 0.75, rcrash = −10.0

Fig. 4: Reward scheme as a function of distance from
cylinder’s center

We found that in practice, the reward potential around
the obstacles expedites the learning of the optimal policy.
We take inspiration from traditional vector field motion
planning literature [15] and design the reward so that
the robot learns to avoid the obstacles as soon as it
veers close to them. Our objective was to make the
DQN implicitly learn to associate features related to the
increasing scales of cylinders in the direction of flight
to negative rewards, accelerating gradients the training
process.

B. Quadrotor model

We use a simplified model for velocity control of the
quadrotor with a PID loop. The calculated force and torque is
then applied to a URDF model of the DJI Matrice 100. This
quadrotor velocity controller is a standalone ROS package,
which subscribes to the velocity commands published as
ROS messages from an OpenAI Gym implementation of our
simulation environment.
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C. Deep Q-Learning Algorithm

In the reinforcement learning problem, the goal is to find
an optimal policy over a given MDP. Under a policy π, the
Q-value of a state-action pair (s, a) is defined by:

Qπ(s, a) = E[R1 + γR2 + ...|s0 = s, a0 = a, π]

where Ri is the instantaneous reward at time step i. Finding
an optimal policy, π∗ is then equivalent to finding the optimal
Q-value, Q∗(s, a) = maxπQπ(s, a). Deep Q-Learning [11]
uses convnets as a function approximator to extend Q-learning
[20] which is a standard off-policy algorithm to solve an MDP.
Let θ denote the weights of the network, and the four-tuple
(s, a, r, s′) be a sample drawn from the replay memory. The
loss function that the network minimizes is then defined as :

L(θ) = E(s,a,r,s′)[
1

2
(R(s, a, s′)

+ γ maxa′ Q(s′, a′; θ)−Q(s, a; θ))2]

For convergence, [11] use a target network and experience
replay, which we adopt in our training pipeline as well. We
refer the reader to [11] for more details involved in the
training process of DQNs.

D. Implementation details

We use the architecture and training parameters proposed
by Mnih et al. [11], with the input being 4 images of size
84x84. The first layer consists of 32 (8x8) convolutional
filters, followed by 64 (4x4) filter, then 64 (3x3) filters, then
a fully connected layer with 512 units and a final layer
which outputs 9 possible yaw actions.Rectifier nonlinearities
are applied after each layer. We implement our pipeline in
Keras and Tensorflow and use a NVidia GTX 980M GPU for
training the network. The relevant training parameters we use
are : a batch size of 32, target update frequency of 10000,
train frequency of 4, Huber loss as the objective function.

E. Baselines and Evaluation Metrics

We compare the performance of our method with the
following baselines:
• Random Policy : chooses random yaw velocities
• Straight Line Policy : flies in straight line based on the

starting orientation
• Mori & Scherer [1] : uses expansion of features to

calculate reactive maneuvers for UAVs
• Dey et al. [10] : used depth prediction from monocular

images for trajectory generation
We evaluate the baselines against our DQN policy using

the following metrics:
• Percentage of obstacles successfully avoided on the

UAV’s path
• Collision-free probability across flight distances. This

metric is introduced by [18]

IV. RESULTS

We present simulated experiments with the UAV model
learning a reactive obstacle avoidance policy based on
monocular images.

A. Training results

During training we had a total of about 6,200 episodes, or
an equivalent of 1.4 million control steps in the environment.
As seen in Fig. 5-6, we observe significant increase in the
reward per episode after roughly 800,000 steps. Fig. 7 depicts
an increase of 180% in flight time (average episode length)
during testing as compared to the initial random policy.

Fig. 5: Train reward with respect to number of control steps.

Fig. 6: Test reward with respect to number of control steps.

Fig. 7: Test episode length with respect to number of control
steps.

B. Quantitative results

Table I compares our DQN reactive policy with the baseline
methods. Given an equivalent number of roughly 50 episodes
for each method, the DQN policy obtained 96% obstacle
avoidance rate significantly outperforming the random policy
and straight line policy, with a 62% and 47% obstacle
avoidance rates respectively. In addition, the DQN policy
swept a much longer flight distance and encountered 486
obstacles cumulatively versus 132 and 93 obstacles for
random and straight line policies respectively.

Although performed in different domains, we can also
compare our simulation results with real robotics experiments
by [1] and [10]. Our DQN approach obtained comparable
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Fig. 8: Percentage of obstacle free flight (y-axis) versus
Average distance across test episodes flown (x-axis) of the
DQN-policy as compared to various baselines

performance for obstacle avoidance rates, with the three
methods in the range of 96-97% rate. It should be noted
that this comparison between simulation and real experiments
is qualitative, and does not provide guarantees for a real-life
application of our method.

Using a different metric, Fig. 8 compares the three
simulated policies in terms of collision-free probability across
flight distances. It is evident that our DQN policy significantly
outperforms both the baselines by a significant margin. While
it takes only an average of 12 meters for 80% of the UAVs
following the straight line policy to crash and around 25
meters in the case of the random policy, we have roughly
60% of the DQN-policy UAVs remaining after 50 meters.
For a length comparison, the square test arena has a sides of
length 36 meters.

C. Qualitative results

Fig. 9 shows a top-down view of the trajectories obtained
by rolling out our learned policy over three different maps,
starting at different randomly sampled orientations. Each
cylinder holds its reward potential (Fig. 4). Qualitatively, we
can see that the UAV avoids the negative reward regions
of each cylinder, staying in regions between cylinders. In
addition, we see oscillatory motions of the trajectories
between corridors of cylinders, caused by the lack of a global
planner in the UAV’s trajectory.

Fig. 10 shows 12 non-sequential frames from test runs,
where the magnitude of yaw velocity command with highest
Q value was drawn to scale. It is interesting to notice that
the yaw commands outputted by the DQN roughly match the
intuition of a human pilot in both direction and magnitude:
when seeing objects occupy great part of the right side field
of view, it turns left, and the contrary happens for objects on
the left side. When objects are far away on the screen, i.e,
small scales, the forward command is sent.

A video of our learned policy can be found at
https://goo.gl/w5yDTX and our code for training

the network, as well as an OpenAI Gym [21]
environment using ROS and Gazebo is available at
https://github.com/madratman/deepf light.

V. DISCUSSION

After training our DQN policy on simulation we raised
two main points for discussion, and improvement as future
work.

A. Field tests with real UAV

So far, all of our results were performed in simulation. We
are currently working on experiments with a real UAV to be
ready by the camera-ready version of this paper. This step
naturally involves training a DQN in simulation and testing
it in a different domain, a process as transfer learning, and
we have three main strategies for a successful simulation-to-
reality transition for reactive obstacle avoidance.

One approach is to, analogously as Sadeghi [18], learn
a policy using images from environments with several
combinations of textures. The other two methods consist
in using different types of sensors that can also be carried
on a UAV platform such as lidar or a depth camera. We can
train the DQN with an input coming from one of these two
other sensors. Intuitively we argue that learning on depth or
lidar information may be easier for real-world transferability
since the raw data would be more similar than images across
domains.

B. Integrate local and global planners

In this work we discuss training a local reactive planner,
but when dealing with a real application of UAVs we must
integrate the local and global planners in a mission. The
notion of when to switch between both is not trivial. We
argue that learning a global-local planner blending function
based on current features of the environment is an interesting
area to be explored in motion planning.

VI. CONCLUSION

We show that Deep Q-learning has the potential to be used
for end-to-end training of obstacle avoidance policies for
UAVs, mapping directly from a stack of monocular images
to controls in a low-textured environment while flying at a
constant speed. We validate our algorithm by testing it on a
random forest of cylinders and comparing it against baseline
algorithms. In addition, we released the open-source code
of our simulator to facilitate rapid prototyping of deep RL
algorithms for flying robots.

We are currently working towards deploying our network
on a real UAV system, using a Nvidia Jetson TX-2, on board
a DJI Matrice 100. To achieve the same, we are training
the DQN on disparity images and lidar data in addition to
images, aiming to facilitate transfer learning.
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TABLE I: Comparison of DQN reactive policy with baseline methods. * refers to methods using real-world experiments

No. of obstacles encountered No. of crashes Obstacle Avoidance Rate
Straight Line Policy 93 49 47%
Random Policy 132 50 62%
Ours (DQN) 486 21 96%
Mori & Scherer*[1] 107 3 97%
Daftry et al.*[10] - - 96.6%

Fig. 9: Results of our learned DQN-policy on three different forests of cylinders. Robot starts from center of the map with a
random orientation. Each trajectory has a different color

Fig. 10: Independent snapshots from various test runs depicting the optimal action corresponding to our learned policy. The
magnitude of the red arrow is proportional to the magnitude of output yaw velocity being executed based on input image
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