
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Autonomous Quadrotor Flight in Simulation using
Reinforcement Learning

Dhruv Mauria Saxena
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

dsaxena@andrew.cmu.edu

Ratnesh Madaan
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

ratneshm@andrew.cmu.edu

Rogério Bonatti
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

rbonatti@andrew.cmu.edu

Shohin Mukherjee
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

shohinm@andrew.cmu.edu

Abstract

Autonomous navigation of Unmanned Aerial Vehicles (UAVs) in real environments
is still a big challenge in robotics, despite great advancements in sensor technologies
and motion planning algorithms. In this work we use a deep learning model to
allow a simulated UAV to avoid obstacles changing its yaw angle while flying
forward. We only use using monocular images as input for Q-learning in 1.4M
iterations with the environment. A video of learned policy can be found in this
link.

1 Introduction

Real-time obstacle avoidance for UAVs is a challenging topic in robotics. In the case of static obstacles,
most algorithms use some sort of 3D reconstruction of the environment, either with occupancy maps
or SLAM to create feasible paths in the environment (1). These approaches, however, requires
heavy computational power and sensor capabilities, and is challenging for small UAVs. In addition,
traditional path planning does not work well in the case of reactive obstacle avoidance, when a very
fast policy response is necessary.

Therefore, there is a need to provide UAVs the capability of mapping high-dimensional sensor input
to complex decision-making in a fast response time. Learning is a possible solution for this need, with
the vehicle using past experiences and interactions with the environment to improve future behavior,
both in simulation and reality.

Past approaches to using learning for the control of UAVs include supervised learning such as the
work of Ross et al. (2). Despite DAgeer being a powerful control technique, it requires human
supervision and also many real-life tests, which are expensive and dangerous in the case of UAVs.
Self-supervised approaches that can be scaled up using simulations are more attractive in this context.

Other recent work has looked at the problem of autonomous quadrotor navigation using reinforcement
learning (3). They use a much simplified state representation for their learning algorithm. The state is
a vector s ∈ R3, with s = [x b], where x is the position of the quadrotor on a 2D grid, and b is its
battery level. This approach fails to encode the complexity of sensors in real-worl problems into the
motion planning decisions, and therefore is very unlikely to be transferred to reality. In our work, we
want to the state to be much higher dimensional being the entire simulator image.

10703 Class Project (2017).

https://www.youtube.com/watch?v=u9Bb66Lcso0&index=6&list=PLRmM4XPPNHmjELT4C_tiQT5DIPnhQEpRL


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Reinforcement learning algorithms require an extremely large number of iteractions with the en-
vironment, and in order to avoid crashes with a real quadrotor, it is preferrable to learn policies
in a realistic simulated environment. Following this principle, Sadeghi and Levine (4) present a
learning-based approach for reactive obstacle avoidance for autonomous quadrotor flying it in a
simulated environment using monocular images as input for the network. After learning a policy
using simulations, they performed experiments in reality, avoiding obstacles in indoor settings with a
UAV.

In this project our objective is to learn obstacle avoidance for an autonomous quadrotor in simulation
using deep Q-learning. We use the DQN architecture popularised by Google DeepMind to play
Atari video games (5) to train a network to output desired yaw commands by taking the simulator’s
monocular image as input.

Our contributions in this project are the following:

• Set up an open-source simulation environment with a quad-rotor to be used for our own
project and by others in reinforcement learning research

• Train a deep Q-network capable of flying a drone autonomously in the Gazebo environment,
avoiding obstacles receiving monocular images as input

2 Methods

In order to achieve our objectives of creating a simulation environment for drones we set up a
simulation environment, a protocol for episodes, a deep Q-network for training and devised a learning
algorithm based on rewards. These steps are explained in the following subsections.

2.1 Gym-Gazebo Environment

Figure 1 shows a close up of the quadrotor in Gazebo.

Figure 1: Closeup of our quadrotor in Gazebo.

Erle Robotics 1 released an open-source simulation environment named Gym-Gazebo (6), which
interfaces the OpenAI Gym 2 with ROS 3 and Gazebo 4. This allows us to simulate a quadrotor in a
Gazebo, communicate with it using ROS, and execute reinforcement learning algorithms using the
OpenAI Gym setup, restarting the drone after each episode and giving steps after the selection of

1http://erlerobotics.com/blog/
2https://gym.openai.com/
3http://www.ros.org/
4http://gazebosim.org/

2

http://erlerobotics.com/blog/
https://gym.openai.com/
http://www.ros.org/
http://gazebosim.org/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

each action. More details about the simulation environment and associated protocols are given in
Section 2.2.

There are several pieces of software that interact with each other to make our simulation possible. First
and foremost, the quad-rotor and obstacles are rendered and simulated in Gazebo. This simulation
is wrapped inside an OpenAI Gym environment which our reinforcement learning agent interacts
with to learn an obstacle avoidance policy. The quad-rotor is equipped with a laser rangefinder and
front-facing camera. The choice of actions, current state of the quad-rotor, and sensor readings are
communicated back and forth between the Gym environment and Gazebo using ROS messages.
A screen-shot of Gym-Gazebo is shown in Figure 2. Currently, our obstacle field is a randomly
generated forest of cylinders with 4m of height and 1m in diameter.

Figure 2: Screenshot of Gym-Gazebo environment setup with cylinders as obstacles.

2.2 Episode Protocol

2.2.1 Simulation with MAVROS

Initially, we used ROS for the communication between various modules, and MAVROS 5 for
communication to/from the quadrotor. This meant that the speed of our simulations was limited by
the Gazebo↔ MAVROS communication protocol, giving us approximately 24, 000 environment
steps in a day at best.

We had to heavily optimize the init and reset protocols for our simulation episodes in order
to even get these speeds. In short, at the start of each episode, the quadrotor is sent a sequence of
commands that arm the motors, make it takeoff to a specified altitude, and hold a constant half throttle
command. During the episode, the quadrotor receives one of the 9 possible velocity commands
(which are converted to motor PWM commands by Ardupilot automatically). While the quadrotor is
in flight, our learning agent uses the images from the front-facing camera as an input for its learning
algorithm.

The laser rangefinder on-board the quadrotor is only used to detect the end of an episode. Once the
minimum laser range reading falls below a specified threshold, the end of an episode is triggered.
After the end of an episode is triggered, the quadrotor enters the Return-To-Land mode. It flies above
the obstacle field to come back to its initial launch position. The motors are then killed, Gazebo world
reset, and start of the next episode triggered.

After optimizing the episode protocol as much as we could, the training speed was still prohibitively
slow for any deep learning algorithm. For this reason, we decided to use a custom velocity controller
to fly the quadrotor in simulation. This is much faster than MAVROS since we can directly update a
Gazebo model’s state (position in this case) via messages published to ROS topics. Most importantly,

5http://wiki.ros.org/mavros

3

http://wiki.ros.org/mavros


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

the overhead from communicating over MAVROS, flight mode changes, and pre-flight checks is
avoided, which tremendously increases the speed of the simulation.

2.2.2 Custom Velocity Controller

Each episode in this simulation environment consists of the quadrotor spawning at (0, 0, 2). It then
starts flying forward with a small constant velocity, and at every timestep picks one of the 9 actions
(uniformally discretized yaw angles between −45◦ and 45◦). Same as the MAVROS simulation,
once the minimum laser range reading falls below a specified threshold, the end of an episode is
triggered. The end is triggered pre-emptively in the sense that the quadrotor never actually collides
with a cylinder. The quadrotor is then reset back to the starting position, the forest of cylinders is
randomized again, and a new episode starts.

This simulation is a lot faster than before. One of the major reasons is that because we use a fast
velocity controller to calculate quadrotor position updates, we are not restricted to run the simulation
in real time. Obviously this is at the expense of realistic dynamics, but that is not a concern for the
purpose of this project. We are able to run the simulation at faster than real-time speeds and execute
upwards of 1, 000, 000 environment steps per day (about half as fast as the OpenAI Gym environment
for Atari games on the same machine).

2.3 Network Architecture

The network architecture is similar to the one in (5). The network takes in preprocessed 84× 84× 4
images as input. The first three layers of the network are convolution layers. In order, they contain 32
8× 8 filters of stride 4, 64 4× 4 filters of stride 2, and 64 3× 3 filters of stride 1. The last hidden
layer is a fully-connected layer with 512 units. The three convolution layers and the penultimate
fully-connected layer all have ReLU activations. The output layer is a fully connected layer with 9
outputs, one for each action in our case.

Figure 3: Network architecture used in this project. Dimensions of each layer are written below them
in the diagram in H ×W × C format.

2.4 Learning parameters

The parameters used for our deep Q-network experiment were the following:

• Target network update frequency = 10,000 steps
• Number of burn-in steps before training = 50,000 steps
• Network training frequency = 10,000 steps
• Batch size = 32 steps
• Number of steps with environment = 1,500,000
• Max episode length = 2500 steps
• Evaluate model every 50,000 steps

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

2.5 Learning Algorithm and Rewards

The task we are working on is autonomous outdoor flight. As a result, the primary metrics to measure
our performance are the duration of uninterrupted flight, and the average distance flown without
intervention. We will evaluate these metrics after every policy improvement iteration of the algorithm.

The Deep Q-network updates the parameters according the following equation.

w ← w + α

(
r + γ max

a′∈A
Qw−(s

′
, a
′
)−Qw(s, a)

)
∇wQw(s, a) (1)

Here Qw′ is the target network and Qw is the online network.

2.6 Reward Shaping

We tailor our reward function to explicitly give emphasis to four inter-related things:

• Forward flight.
• Distance from obstacles.
• Crashing into obstacles, or exiting the obstacle field.
• Reaching the goal point.

The quadrotor gets a small positive reward for every timestep that it does not crash. Each obstacle
has a radially emitted potential field between 0.5m− 1.5m distance from it. The quadrotor receives
a linearly increasing negative reward inside this potential field. At ≤ 0.5m, there is a large negative
reward to signify a crash and the end of the episode is triggered. The same occurs if the quadrotor
exits the obstacle in any direction. The goal point is defined to be at (xmax, 0, 2) for some xmax.
There is a positive reward that is inversely proportional to the distance from the goal point. There
is a large positive reward for being within some threshold of the goal point. At every timestep, the
quadrotor receives the sum of all these rewards.

Written down, the reward at time rt is,

rt = 0.25 +
∑
o∈E

(
1

d(q, o)
1 [0.5 ≤ d(q, o) ≤ 1.5]− 10× 1 [d(q, o) < 0.5]

)
+ 10× 1 [d(q, g) < 0.5]− 10× 1 [q 6∈ E ]

where E is the environment, o denotes obstacles in the environment, q denotes the quadrotor, d(·, ·) is
the Euclidean distance function, 1 is the indicator function which evaluates to 1 when its argument is
true, and g denotes the goal point.

3 Results

In this section we present the results obtained in learning obstacle avoidance using monocular images
in the Gym-Gazebo simulation environment.

First, we successfully achieved the goal of creating an open-source Gym-Gazebo simulator for
quadrotors for deep reinforcement learning research. The code can be found in this Github link. It
is important to notice that we used elements from Erlecopter’s quadrotor simulation environment,
which as not entirely prepared for resetting simulations, and we built more code upon it, being one of
the greatest contributions the custom velocity controller.

In the training phase we ran a total of 1.4 million steps in the environment, which accounts for roughly
150 thousand episodes of the drone flying until ultimately crashing into a pillar.

As seen in Figures 4-6, only after roughly 800,000 interations with the environment we could see a
significant increase in the reward per episode and also in episode length in both the training and test
configurations.

It it not only our numerical results that indicate learning over time. A qualitative analysis of the
quadcopter flying in the environment also shows the learned policy to be better than a random policy,
and the video can be found in the following link.

5

https://github.com/dhruvms/drlc_gym_gazebo
https://www.youtube.com/watch?v=u9Bb66Lcso0&index=6&list=PLRmM4XPPNHmjELT4C_tiQT5DIPnhQEpRL


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 4: Train reward with respect to number of steps

Figure 5: Train episode with respect to number of steps

Figure 6: Test reward with respect to number of steps

4 Discussion

In this work we built an open-source Gym-Gazebo environment for reinforcement learning and
learned a policy for obstacle avoidance in a simulated Gazebo environment where the quadcopter
chooses its next yaw angle based on monocular images as input. With this learned policy we can
successfully navigate around randomly positioned vertical pillars.

In our work we show that deep Q-learning have the potential to be used for end-to-end training of
policies for quadcopters. Even though our results are promising, there are very important steps that
still need to be accomplished before using learned policies in a real physical system:

• High variance in rewards: even though the general trend for rewards and episode length
is to grow as the number of training samples increases, we still observe extremely high
variance, which is an issue in physical systems. Future work in this area involves developing
performance guarantees for learned policies

• Action space in multiple dimensions: our work allowed only change in yaw for the
quadcopter. Future work can address learning in higher-dimensional action spaces, changing
the altitude, pitch roll and yaw of the vehicle

• Discrete versus continuous actions: instead of discretizing commands, we can learnin
policies in continuous space, allowing for more smooth movements

• Transfer learning: policies learned with monocular images in simulation must be transfer-
able to real images. Two possible solutions for this issue are using photo-realistic simulators
in the learning process or learning obstacle avoidance in disparity space

Acknowledgments

The authors acknowledge Weikun Zhen for the Gazebo model of the simulated quad-copter.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

References
[1] S. Hrabar, “3d path planning and stereo-based obstacle avoidance for rotorcraft uavs,” in Intelli-

gent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pp. 807–814,
IEEE, 2008.

[2] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. D. Bagnell, and
M. Hebert , “Learning monocular reactive uav control in cluttered natural environments,” in IEEE
International Conference on Robotics and Automation, IEEE, March 2013.

[3] N. Imanberdiyev, C. Fu, E. Kayacan, and I. M. Chen, “Autonomous navigation of uav by using
real-time model-based reinforcement learning,” in 2016 14th International Conference on Control,
Automation, Robotics and Vision (ICARCV), pp. 1–6, Nov 2016.

[4] F. Sadeghi and S. Levine, “(cad)Θ2 rl: Real single-image flight without a single real image,” arXiv
preprint arXiv:1611.04201, 2016.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[6] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “Extending the openai gym for
robotics: a toolkit for reinforcement learning using ros and gazebo,” 2016.

7


	Introduction
	Methods
	Gym-Gazebo Environment
	Episode Protocol
	Simulation with MAVROS
	Custom Velocity Controller

	Network Architecture
	Learning parameters
	Learning Algorithm and Rewards
	Reward Shaping

	Results
	Discussion

