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Fig. 1: RRT expansion based on learned sampling distribution. Start is the lower left corner and goal is upper right corner.
Kernel density estimate fit to 200 samples with blue as high probability and pink as low. Next sample checked in yellow.

Abstract—Sampling based motion planning has been shown
to be effective across various domain of problems, however the
bottleneck of collision checks in high dimensional problems still
remains. In this work, we propose to learn the distribution which
is used by a planner to sample the configure space. Specifically,
we extend previous work by using a conditional varitional auto-
encoder to learn such a distribution in an online fashion, where
the conditioning variables are both the instantaneous planning
graph and the workspace. We demonstrate our method for a 2D
holonomic point robot over a dataset of synthetic environment of
multiple types, and use Rapidly exploring Random Trees (RRTs)
as our path planner. Our results show more efficient sampling
distributions and reach the goal using significantly fewer collision
checks than vanilla RRT.

I. INTRODUCTION

Sampling-based motion planning algorithms are powerful
tools for solving high-dimensional problems quickly, and are
also probabilistically complete, meaning that the algorithm
will converge to a solution as the number of samples increases,
if one exists. Sampling-based planners rely on an implicit
representation of the configuration space, drawing samples
from a distribution across the domain, and building a search
tree that ultimately links the start and goal state.

Traditional sampling-based planners use a uniform distri-
bution of samples in the configuration space. This approach
is inefficient due to three main factors: (1) not all samples
improve the search to closer to the goal state, (2) narrow gaps
in the environment may require finer sampling granularity
to be surpassed, and (3) next best possible samples are
dependent on the nodes of the current search tree. Previous
work [1, 2, 3] addressed the first two points, showing that
planners can significantly improve performance by biasing
the sampling distribution using features of the environment.
However, these works use a supervised approach and generate

a static sampling distribution given a planning problem, which
is not changed as the planning graph or tree is being built,
and are inherently limited in their capabilities to reach the
goal as fast as possible. Intuitively, in a case where the
environment is composed of several gaps in sequence, once
the planner found a solution through a gap, the optimal next
samples should be taken close to the next gap. Similarly,
if a lot of collision checks are failing indicating a cluttered
environment, the distribution should be conservative, sampling
states close to the nodes of the graph, whereas if the majority
of the collision checks pass, then the distribution can afford
to take risky samples. Hence, there’s a need for an online
paradigm in the space of methods which seek to learn sampling
distribution, and the current search graph is a key component
of the same.

In this work, we propose conditioning the sampling dis-
tribution jointly on the current search graph, in addition to
the the fully observable environment. Thereby, we implicitly
capture the time dimension of the search process, adapting the
sampling distribution as the search progresses. Our algorithm
uses a Conditional Variational Autoencoders (CVAE) to learn,
using various expert samples, a sampling distribution during
training time, using which samples in the configuration space
can be drawn from at test time. We apply our sampling-based
algorithm to a variety of 2D planning environments.

We learn a distribution in a supervised fashion offline, and
then improve upon it in an online fashion, using different
candidate sampling distributions as experts.

II. RELATED WORK

The use of heuristics for classic deterministic planners such
as A∗ has been greatly explored in literature [4] and signifi-
cantly improves planning time performance. Recent work from
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Fig. 3: Our Sampling Network architecture. Graph and En-
vironment are encoded via the Conditioning Features, shown
in green. The CVAE uses these features to replicate the pre-
computed high-utility samples x, with its sample distribution
x̂.

Bhardwaj et al. [5] explores use a clairvoyant oracle to learn
heuristics for search-based planners based on features of the
obstacle map. Simlar to our approach, a conditional variational
autoencoder is used to mimic the oracles samples, conditioned
on a flattened representation the environment, the start, and the
goal. This lead to samples near the optimal distribution, but
the samples might not actually progress the tree toward the
goal in a timely fashion.

Similarly, we expect the use of rules to also improve
performance of sampling-based algorithms. We can think of
different objectives for biasing samples. For example, in the
works of Arlsan [3] and Pan [6], the objective is to learn
a sample rejection algorithm to learn collision free points in
local searches, and at the same lower cost-to-go to the goal.

Closer to our approach, in the work of Zucker [2], the
objective was to bias the sampling distribution using manually-
defined features of the fully observable environment. This idea
was used again by Ichter [1], who used a CVAE to learn
sampling distributions given successful trajectories for a given
environment.

One important issue when biasing distributions is how to
analyze the utility of a given sample, and possible trade-
offs between utility [7] and exploration of the environment.
Suppose we have access to a clairvoyant oracle that knows
the optimal path to a problem. If we trained the distribution
bias only with examples from the optimal path, we would
be maximizing utility, but at the same time we would not
emphasize exploration. Exploration is particularly important
for environments where the optimal solution lies in small
gaps, hard to be sampled from. In a way, Ichter addresses
this problem by alternating between completely random and
biased samples.

In terms of biasing the sampling distribution based on
current progress of the search tree, Gammell [8] uses the
distance from start to goal on the current tree to limit searches
to an ellipse from start to goal. In our work it is arguable that
we aim to implicitly learn such a strategy based on the current
search tree, but even for cases when we haven’t reached the
goal yet.

III. APPROACH

We introduce a method to learn sampling distribution for
traditional sampling based motion planning algorithms, which
is conditioned both on the environment or workspace, and
the instantaneous planning graph. Specifically, we consider the
motion planning problem from a start point to a goal region
for a 2D holonomic point robot using the RRT algorithm. We
use a conditional variational autoencoder (CVAE) [9] with
the workspace and the planning graph as the conditioning
variables. Both are represented as images, as depicted in Fig.
3 and are concatenated before feeding them into the CVAE,
and the network is ”sampled” at test time from inside the RRT
algorithm. We now explain our modules one by one :

A. Rapidly-expanding Random Trees

RRTs [10] fall under the sampling based motion planning
paradigm, where the key idea is to bypass the computationally
intensive process of building a (high-dimensional) configura-
tion space, by sampling random configurations and incremen-
tally adding them to the current planning graph if they are valid
- collision-free and kinematically or dynamically feasible. RRT
is an efficient, incremental tree building algorithm devised to
solve single query planning problems, and it works as follows.
In the beginning, the start configuration as added to the tree.
Next, a random sample is drawn and an attempt is made to
connect to the current tree by finding the nearest node in
the tree. If the connection is feasible, a new node is added
according to a greediness or ”growth-factor”, ε. The previous
two steps are repeated until the goal region is reached. This
vanilla RRT algorithm can be expedited by multi-directional
trees, biased sampling, changing the greediness, and also can
be made optimal by local re-wiring of the tree as in RRT*
[11]

B. Conditional Variational Autoencoder (CVAE)

Similar to Ichter et al. [1], we train a conditional varia-
tional autoencoder to mimic the sampling distribution of good
samples. However, we conditioned on both the environment
and as well as the current search tree. This lead to a non-
stationary distribution that evolves over time, leading the
search tree along the optimal path, generating the samples at
the appropriate time with respect to the planner’s progress.
This makes sense because in order to sample a path from the
start to the goal, the planner must not only sample a collision
free series of points connecting the start to the goal, but it
must also sample them in the correct order.

To produce the desired sample distribution, our CVAE is
trained on high-utility samples, described in Section III-C.



At test time, the latent space is sampled and decoded in
combination with the conditionally variables to produce high-
utility sample. Our loss function is the standard combination
of mean squared error as the reconstruction loss and KL-
divergence as the distribution loss.

C. Data Generation

In order to generate sufficient and labeled training data,
we adopted a sampling based approach to data generation.
Specifically, in order to generate labels for the training data,
we run RRT for a random number of iterations to generate a
partially solved planning graph. From this graph, we examined
a set of n valid future nodes, shown in red in Figure 4,
and select a subset of of good nodes locations based on a
utility function g(G,X). The details of this are described in
section III-D. This subset is used as the label for the next
best sample given G and E. Then we can form a training
dataset of (E,G, li) where li is a node location (xi, yi) from
the subset of good future node positions which is used as the
label. We repeat this over all k graphs for the environment
and all environments in the dataset to form our total training
dataset.

D. Sample Utility

Given an environment and the current planning graph, it is
not entirely obvious as to which point should be sampled next
and depends on whether we would like to sample as close
to the optimal path as possible or to generate a valid path
as fast as possible. In our initial work, we are focusing on
the later case. As a result, we defined a heuristic, g(G,X),
for measuring the utility of adding a sample to the current
graph. We chose a utility function based on the path length
from a node on the current graph to the sample, and then from
the sample to the goal. Specifically, we use the 8 connected
distance of a path from the sample to the goal, shown varying
from close (blue) to far (yellow) in Figure 4. Since all of the
samples are pre-screened to be able to connect to the planning
graph without collision, we do not worry about having to also
check the distance from the graph to the sample as well. Figure
4 shows a visual representation of this process.

E. Online Learning

Initially, we train in a supervised fashion, using trees
generated using RRT with a uniform distribution. However,
this is not ideal as tree building is a sequential process
and trees generated using solely our sampling policy vary
greatly from the trees generated using a uniform distribution.
Uniform distributions can differ from learned distributions in
various ways such as significant branching shown in Figure 4.
Additionally, in challenging environments, they might not be
able to ever reach the goal in the training data as seen in the left
figure in 5. As a result, the training data for this environment
will be limited to areas around the start. Trees generated using
the learned distribution, however, tend to progress further and
be more linear as shown in the middle figure if 5. However,
they fail to reach the goal since they are no longer similar to

Fig. 4: Supervised samples, shown in red (top 20 in blue),
expanded from graph, shown in black. The background color
represents 8 point connected distance to the goal (blue is close,
yellow is far)

Fig. 5: Sample search tree generated using uniform distribution
(left); Search tree after 100 epochs of supervised learning
(middle); Search tree after 7 iterations of dataset aggregation
(right).

the trees in the training dataset. We applied a similar technique
to the methods found in DAgger [12] and inspired by the
approach taken by Bhardwaj et al. [5] for heuristic learning we
train later iterations on an aggregated dataset of trees generated
using both uniform and learned distribution to produce the
right most figure in 5.

IV. EXPERIMENTS

A. 2D Holonomic Environment

Sampling distributions were learned using the planning
datasets provided in Bhardwaj et al. [5]. This dataset consisted
of eight environment types, including bugtraps (U-shape ob-
stacles), forests, mazes, and gaps. A sampling distribution was
learned from each of these environments using the top 20 the
best sample, according to our utility function, of 100 uniformly
generated samples.

The environment is represented as a 2D occupancy grid,
allowing us to use a 2D convolutional neural network to fea-
turize the environment information for conditioning the CVAE.
Additionally, our configuration space is also two dimensional,
allowing us to project the graph directly into the work space
in the form of an image. This graph image and the occupancy
grid are stacked and feed into a small convolutional network
with two convolutions layers and a single fully connected



Fig. 6: Number of collision checks for RRT using uniform and
learned distributions on the Forest environment.

hidden layer, shown in green in Figure 3 to produce our
CVAE’s conditioning variables.

The results in each of the training environments can be
seen in Figure 7. The distribution is visualized using a kernel
density estimate fit to 200 random samples drawn from the
learned distribution and example sample is shown as a yellow
circle. The sequence of tree expansions using the learned
distribution can be seen in Figure 1 for the Forest environment.
Further sequences can be seen in Figures 10 and 11. We
compared RRT using a uniform and the learned distribution
on five instances of the forest environment, shown with error
bars in Figure 6. The learned distribution found the goal using
half the number of collision checks.

We tested the effect of training on a single best sample, like
in Ichter et al. [1], verses a distribution of high utility samples.
Since we are conditioning on the graph and the environment,
there is only a one-to-one mapping between samples and con-
ditioning variables, as opposed to many-to-one mapping you
get when only conditioning on the environment (a sample for
each vertex in the optimal path). This resulted in a extremely
tight distribution that basically converges to a single point,
seen on the left of Figure 8, where as using the top 20 produces
a more varied distributions. While having an extremely tight
distribution is useful when you perfectly select the optimal
sample, it prevents the RRT from exploring when this sample
is incorrectly predicted and may lead to the planned being
unable to find the goal.

B. Implementation Details

We use Pytorch [13] to implement the CVAE. The
image base feature network has a structure of C32-P2-
C32-P2-FC1024 with relu activation functions and the
CVAE has has two fully connected layers with 512 hid-
den units and latent dimension of 3. Open Motion Plan-
ning Library’s [14] implementation of RRT is used to

(a) shifting gap (b) maze

(c) forest (d) multiple bugtraps

Fig. 7: Learned sampling distribution on variety of environ-
ments.

Fig. 8: Samples (red-yellow +) drawn from CVAE trained on
single best sample, on left, and top 20 of 100 on right.

get the current planning graph and change the sam-
ple therein. Our code is available at https://github.com/
madratman/learn2sample motion planning and https://github.
com/madratman/ompl learn2sample.

V. FUTURE WORK

A. Training on larger state-spaces: 5 DOF manipulator

We are currently setting up a 5 DOF manipulator environ-
ment on OMPL to test our approach on larger state-spaces than
2D, and also to test if our approach works well in environments
where the configuration space differs from the workspace.

So far we have already implemented an environment for
generating training data in which we create an arbitrarily large
forward tree with N nodes (from start to goal), and then
generate K collision-free samples with respect to the current

https://github.com/madratman/learn2sample_motion_planning
https://github.com/madratman/learn2sample_motion_planning
https://github.com/madratman/ompl_learn2sample
https://github.com/madratman/ompl_learn2sample


Fig. 9: Samples drawn from 5-DoF arm distribution. Start state
is represented by the dashed yellow line and goal by the dashed
green. The samples are colored by their distance to the goal
(green is close, yellow is far), where the distance metric is
calculated over the SO(2)5 manifold.

tree, raking them according to their utility function. Figure
9 shows two examples of different samples ranked by utility
(color variation), going from one start node to an end node
(dashed lines).

The utility function described for the 2D point-robot prob-
lem, g(G,X) is not applicable for RRT in higher dimensions,
as we are not really operating on a grid, and our workspace
differs from the configuration space. A utility function can be
arbitrarily defined depending on the context of the planning
problem. In our case, we decided to calculate our cost as
the displacement of each joint, with equal weights. However,
independently of how one decides to calculate costs, the ideal
sample must be the one that minimizes the cost connecting the
current graph with the goal configuration (so distance from
start to closest node to the sample plus distance from node to
sample, plus distance from sample to goal).

In an ideal training environment, if we have K samples, the
best sample would be obtained by running an optimal planner
on each sample until convergence, and ordering them by utility
values. However, such an approach would prove too compu-
tationally costly in practice, in particular for high-dimensional
environments. We opted therefore, for the following approach:
(1) for a large amount of time (order of minutes), we run a
planner such as RRT* forming a nearly optimal backwards
tree from goal to start, (2) we find the nearest nodes to the
current sample both in the forward and backwards trees, and
(3) we sum the costs from start to sample on the forward
tree and from sample to the goal via the backwards tree to
obtain the utility function. This procedure assumes that the
backwards tree is sufficiently dense across the configuration
space, and greatly diminishes computational complexity. With
varying greediness of these optimal samples. we expect the
trained autoencoder model to take ”risks” if for example, a lot
of collision checks were free.

B. Graph convolutions

Our tests so far have been in simple, toy state spaces.
When generating the conditioning variables in more complex

state spaces, the graph will not adequately represented as a
projection into a 2D image or 3D voxel representation. In these
cases, the full graph is featurized using graph convolutions
[15]. The graph nodes are described by their configuration
space representation, as well as a their connectivity. Graph
coarsening operations are used as pooling layers in graph
space and allow the network to maintain a stable feature
representation over different sizes of graph. The resulting
feature representation will be combined with the environment
description, a occupancy grid in either image or voxel map
form, using convolutional layers, 2D or 3D respectively, and
passed on the the variational autoencoder as the conditioning
variable. A problem that will need to be addressed is the
ordering of the vertices, while having no meaning to the graph,
will have an effect on the linear layers of the featurizing
network. This can be solved by randomizing this ordering or
by using the

Graph convolutions require graphs of a fixed size. To
facilitate this we ”resize” the trees by padding trees that are
to small with singleton vertices and use the graph pooling
operation to shrink trees that are too large.

VI. CONCLUSION

Sampling based motion planning algorithms are highly
effective as they do not rely on an explicit representation of
configuration, but rather approximate it by sampling based
motion planning has been shown to be effective across various
domain of problems, however the bottleneck of collision
checks in high dimensional problems still remains. In this
work we learned the distribution which is used by a planner to
sample the configure space. improving past work by using a
conditional variational autoencoder to learn such a distribution
in an online fashion, where the conditioning variables are
both the instantaneous planning graph and the workspace. We
demonstrated our method for a 2D holonomic point robot over
a dataset of synthetic environment of multiple types, and use
Rapidly exploring Random Trees (RRTs) as our path planner.
Our results show more efficient sampling distributions and
reach the goal using significantly fewer collision checks than
vanilla RRT.
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(a) Gap (Iteration 0, 2, 4, 6, 8, and 10)

(b) Bugtrap 1 (Iteration 0, 2, 3, 5, 6, and 8)

(c) Bugtrap 2 (Iteration 0, 1, 2, 3, and 4)

(d) Maze (Iteration 0, 3, 6, 9, 12, and 14)

(e) Forest 1 (Iteration 0, 6, 12, 18, 24, and 29)

(f) Forest 2 (Iteration 0, 3, 6, 9, 12, and 16)

Fig. 10: Learned sampling distribution on variety of environments. KDE fit to 200 samples (blue high, red low). Next sample
checked in yellow.



(a) Multiple Bugtrap 1 (Iteration 0, 4, 8, 12, 16, and 21)

(b) Multiple Bugtrap 2 (Iteration 0, 2, 3, 5, 6, and 8)

(c) Gap Forest 1 (Iteration 0, 3, 6, 9, 12, and 15)

(d) Gap Forest 2 (Iteration 0, 5, 10, 15, 20, and 23)

(e) Gap Forest 3 (Iteration 0, 17, 34, 51, 68, and 84)

Fig. 11: Learned sampling distribution on more complicated environments. KDE fit to 200 samples (blue high, red low). Next
sample checked in yellow.
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