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1 ABSTRACT

Explicitly programming a robot to perform a task with a behavior that seems natural to a

human being, or even using common-sense assumptions, is extremely difficult. While it

is often easy to abstractly describe or even demonstrate a desired behavior [1], designing

explicit rules to reproduce the same behavior is difficult, time consuming and often times an

expert’s behavior cannot be represented by simple functions. Given expert demonstrations,

however, it is possible to estimate a cost functions using Inverse Reinforcement Learning

(IRL) techniques. In this project we compare two IRL methods, Maximum Margin Planning

(MMP) and Maximum Entropy (MaxEnt), for encoding cost functions given 35 synthetic

expert demonstrations in 10 different 2D scenarios. After learning cost functions associated

with three different classes of obstacles, we estimated cost maps for four new test scenarios.

Qualitatively both techniques reproduced the original cost maps with reasonable accuracy,

but results using MMP presented a better spatial resolution, given our discrete feature vector.

2 INTRODUCTION

Real-life behaviors that oftentimes seem intuitive and effortless for human experts such as

avoiding obstacles while controlling a vehicle can be extremely hard to explicitly program

in autonomous machines, given the high dimensional space of the actions such vehicle can

take. Therefore, somehow learning this intuitive behavior becomes an important task to

increase the autonomy of intelligent machines.

Our objective in this project is to learn cost functions from an expert demonstrations to

solve a motion planning problem in the context of semantic obstacle avoidance. The idea is

that learned cost functions can later be sent as an input to a planner algorithm to generate

trajectories for autonomous vehicles in a real-life scenarios.

Semantic obstacle avoidance refers to the act of avoiding different classes of obstacles

(e.g. trees, wires, buildings) with different behaviors. As an example, flying a drone under a

bridge is more costly than flying over it due to potential loss of GPS signal. However, flying

either under or over a wire would does not present GPS loss, but drones should maintain a

greater distance from wires than from buildings due to difficulty in precise wire localization.

We used Inverse Reinforcement Learning (IRL), a method of imitation learning, to recover

obstacle avoidance policies given a dataset of expert-trajectories generated synthetically

with a reference A∗ planner. We implemented two popular IRL approaches in this project:

Maximum Margin Planning (MMP) and Maximum Entropy (MaxEnt). In each of these
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approaches, the cost (or reward) is expressed as a linear combination of some features over

states. In MMP [1], imitation learning is framed as a maximum margin structured prediction

problem over a space of policies. The MaxEnt method [2] resolves the ambiguity of previous

approaches where no single reward function is able to make the demonstrated behavior

optimal [1], and where a single policy could be optimal for multiple reward functions [3]; by

exploiting the principle of maximum entropy, where the probability of preference for any

trajectory is proportional to the exponential of reward along that path. This method gives a

single stochastic policy.

There are also methods that use deep learning to compute non-linear combinations

of features to create the resulting cost functions. [4] outlines a general framework where

deep neural networks are used to approximate the reward functions in the IRL problem,

thereby modeling them as non-linear combinations of features and improving upon previous

approaches, which modeled them as linear [2] and used non-parameteric methods like

Gaussian Processes [5]. Non-parametric methods become sub-optimal for large problems.

However, these methods were not tested in the current project, but are mentioned here as

possible future improvements.

3 PRE-REQUISITES

In this section, we first introduce Markov Decision Processes. Next, we give a short introduc-

tion to Primal-dual formulation, which we will use in the derivation for the Max-Entropy

Inverse Reinforcement Learning method.

3.1 Markov Decision Process

A finite Markov Decision Process (MDP) is a tuple (S, A, {Psa},γ,R) where

• S is a finite set of N states

• A = {a1, · · · , ak } is a set of k actions

• Psa(.) are the state transition probabilities upon taking action a in state s

• γ ∈ [0,1] is the discount factor

• R : S 7→ IR is the reward function
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A policy is defined as a map π : S 7→ A. The (state) value function for a policy π is defined

as

V π(s1) = E(R(s1)+γR(s2)+γ2R(s3)+·· · |π)

where the expectation is over the distribution of state sequence (s1, s2, s3, · · ·) that we

observe when we execute the policy π. The action value function is given by

Qπ(s, a) = R(s)+γEs′ Psa (V π(s′))

The state and action value functions satisfy the following equations known as the Bellman

Equations

V π(s) = R(s)+γ∑
s′

Psπ(s)(s′)V π(s′)

Qπ(s, a) = R(s)+γ∑
s′

Psa(s′)V π(s′)

3.2 Primal-Dual formulation

Consider the following optimization problem,

min
x

f (x)

subject to Ax ≤ b

P x = q

Let’s try and find a lower bound for the minimum value our objective function can take

subject to the given constraints. Let C denote the set of feasible x. Notice that,

min
x∈C

f (x) ≥ min
x∈C

f (x)+uT (Ax −b)+ vT (P x −q) (1)

for u ≥ 0. This is because for x ∈ C , Ax −b ≤ 0 and P x − q = 0. Note that there is no

constraint on v . Define the Lagrangian function as,

L (x,u, v) = f (x)+uT (Ax −b)+ vT (P x −q) (2)

Then, we can say that,

min
x∈C

f (x) ≥ min
x∈C

L (x,u, v) ≥ min
x

L (x,u, v) (3)
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The second inequality stems from the fact that minimizing over an unconstrained set

gives you more freedom to chose x which can reduce the function value further. Observing

that minx L (x,u, v) is a function of u and v , denote

g (u, v) = min
x

L (x,u, v) (4)

Then,

min
x∈C

f (x) = f ∗(x) ≥ g (u, v) (5)

A tighter lower bound can be obtained by the solving the following dual optimization

problem,

max
u,v

g (u, v)

subject to u ≥ 0

4 INVERSE REINFORCEMENT LEARNING

Consider the example of creating a model to understand how a bee chooses a flower as it

forages for nectar. Its preference for a flower may be a influenced by a variety of factors, such

as its belief of flower’s nectar content, the distance to the flower and the time it takes to reach

it, and the risk of predators. It is difficult to assign weights to each of these factors a priori.

Inverse Reinforcement Learning (IRL) deals with the problem of determining the reward

function that an agent is trying to optimize given some observations of the agent’s behaviour.

An IRL algorithm would thus, attempt to learn the correct set of weights for the various factors

in the bee foraging problem, given some demonstrations of bees visiting flowers.

In this work we look at finite space and assume that the model is known. Given a finite

state S, a set of k actions A = {a1, · · · , ak }, transition probabilities {Psa}, discount factor γ and

demonstrations from a policy π, we wish to find a reward R such that π is an optimal policy

in the MDP (S, A, {Psa},γ,R). In both methods discussed below, the reward at a state-action

pair is assumed to be linear in its features.

4.1 Maximum Entropy IRL

Maximum Entropy IRL takes a probabilistic approach to determining the unkown reward

function. The principle of maximum entropy is used to resolve the ambiguity in choosing

a distribution over decisions subject to the constraints that the expected feature counts of
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the learner’s behaviour match the empirical feature count of the expert’s demonstrations.

This ensures that the distribution over decisions is no more committed to any particular path

than this constraint requires.

Formally, let τi denote trajectory i and let pτi = p(τi ) denote its probability. Let si ,t and

ai ,t be the state and action at time t in trajectory i and let f (si ,t , ai ,t ) denote the feature of this

state-action pair. Let f̄ (τi ) =∑T
t=1 f (si ,t , ai ,t ). Then, maximum entropy inverse reinforcement

learning maximizes the cross entropy (or minimizes the negative cross entropy) as follows

min
p

∑
τ

pτ log pτ

subject to F p = 1

n

n∑
i=1

f̄ (τi )

1T p = 1

where Fi j = f̄i (τ j ), the i th entry in f̄ (τ j )

Then,the Lagrangian is defined as

L (p,θ, v) = ∑
τ

pτ log pτ+θT (F p −b)+ v(1T p −1)

= −θT b − v +∑
τ

(θT F )τpτ+pτ log pτ+ v pτ

= −θT b − v +∑
τ

pτ(log pτ+ (θT F )τ+ v)

Minimizing with respect to pτ by setting

∂L (p,θ, v)

∂pτ
= 1+ log pτ+ (θT F )τ+ v = 0

gives

p∗
τ = exp(−θT f̄ (τ)− v −1) = exp(−θT f̄ (τ))

exp(v +1)

Since p∗
τ should sum to 1 over all possible trajectories,

exp(v +1) =∑
τ

exp(−θT f̄ (τ)) = Z (−θ)

Thus, the probability of trajectory τ is given by,

p(τ) = e−θT f̄ (τ)

Z (−θ)
= ewT f̄ (τ)

Z (w)
= e

∑|τ|
t=1 R(st ,at )

Z (w)
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for w =−θ and reward function R. Now,

log pτ+ (θT F )τ+ v =−1

Therefore,
L (p,θ, v) = −θT b − v +∑

τ

pτ(log pτ+ (θT F )τ+ v)

= −θT b − v −∑
τ

pτ

= −θT b − v −1

= −θT b − log Z (−θ)

So the dual becomes,

max
θ

−θT b − log Z (−θ)

Or equivalently,

min
θ

log Z (−θ)+θT b

Setting w =−θ, we get

min
w

log Z (w)−
〈

w,
1

n

n∑
i=1

f̄ (τi )

〉

4.2 Maximum Margin Planning

The goal of Maximum Margin Planning (MMP) is to learn a cost (negative reward) function

for which the example policy has lower expected cost than any other alternate policy by a

margin that scales with the loss of that policy. If the policy is very similar to the example

policy (i.e. low loss), then the margin is small and the example policy needs to to have a cost

only slightly less than the policy. On the other hand, if the policy differs from the example

policy by a large extent (i.e. high loss), than the margin is large and the cost of the example

policy should be significantly lower than the policy.

As before, let S be the set of states and A be the set of actions. Let M = S × A be the

combined set of state action pairs. Let a policy be represented by its state-action frequency

count µ ∈ IR|M | and let G be the set of all feasible state-action frequency counts. Let the fully

observed feature vector for state s and action a be denoted by fsa ∈ IRd . These features can

be written in a combined matrix F ∈ IRd×|M |. Finally, each policy µ has an associated loss

Li (µ) which quantifies how bad a given policy µ is with respect to the expert policy µi for the

i th example. Then using this notation, the intuition above is formalized as follows
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min
w∈W ,ε∈IR+

1

N

N∑
i=1

εi + λ

2
||w ||22

subject to ∀i , w T Fiµi ≤ min
µ∈Gi

{w T Fiµ−Li (µ)}+εi

where {εi }N
i=1 are slack variables which allow constraint violations for a penalty and w T Fiµ

is the cost for using policy generating µ. Since the slack variables are in the objective function,

the minimization drives the slack variables to be as small as possible. In particular, at the

minimizer the slack variables will always exactly equal the constraint violation. The following

equality condition, therefore, holds at the minimizer

εi = w T Fiµi −min
µ∈Gi

{w T Fiµ−Li (µ)}

This allows moving the constraints directly into the objective function leading to the

following Max Margin Planning objective

C (w) = 1

N

N∑
i=1

(w T Fiµi −min
µ∈Gi

{w T Fiµ−Li (µ)})+ λ

2
||w ||22

5 GENERATING TRAINING DATA

In order to learn a cost function given expert demonstration, we need a dataset of MDP(s),

cost functions corresponding to different classes of obstacles, and the expert demonstrations

themselves. The following sub-sections highlight how we accomplish the same.

5.1 Gridworld

We use a simple 2D gridworld of size (100,100) and put point obstacles at random locations.

The cost function builds upon the one we had in Assignment 4 in the line optimization

problem, as shown below.

To emulate semantics in obstacles, for the goal of the robot avoiding different classes of

obstacles with different behaviors, we weigh the cost function from the homework assignment

by wk for the k th class, and also change the zero-out distance term, εk . The cost associated

with the i th obstacle of semantic class k at state (x, y) is given below. Here d(x,y) is the

Euclidean distance between the state and the obstacle, and εk is a term we call the zero-out

distance informally.
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Table 1: Training data parameters

Red (k=1) Yellow (k=2) Green (k=3)
No of obstacles 15 15 15

εk 20 15 25
wk 0.6 0.4 0.2

Table 2: Testing data parameters

Red (k=1) Yellow (k=2) Green (k=3)
No of obstacles 5 5 5

εk 20 15 25
wk 0.6 0.4 0.2

costi (x, y) =
{

wk ∗εk , if d(x,y) > εk

wk ∗ 1
2∗εk

(d(x,y) −εk )2, d(x,y) < εk

The total cost for N obstacles is then obtained by adding costi as i goes from 1 to N . Our

training data set contains of 10 gridworlds and the obstacle parameters just discussed, as

shown in Table 1.

5.2 Generating synthetic trajectories

Now that we have gridworlds along with costmaps, we need some expert demonstrations that

IRL algorithms will use. The gridworld can be interpreted as a Markov Decision Process, with

the cost function being the negative of the reward, the state being the tuple of coordinates

(x, y) and the possible action at each state being a tuple of at max 8 numbers, corresponding

to left, right, up, down, and the four diagonal directions. To generate expert demonstration,

we need to solve this MDP.

We implemented value iteration and the A* algorithm for the same as explained below.

5.2.1 Value Iteration

The goal of the value iteration algorithm is to solve an MDP in a backwards fashion, by starting

from an arbitrary value function V0 and updates defined by the following recursively equation

(until convergence defined by Vi+1 −Vi < θ).

Page 9 of 16



Final project 16-811: Math Fundamentals for Robotics

Vi+1(s) = max
a

∑
s′

Pa(s, s′)(Ra(s, s′)+γVi (s′)), for stochastic MDP

= max
a

(Ra(s, s′)+γVi (s′)), for deterministic MDP

By precomputing the values of each state, we could generate synthetic trajectories by

sampling a random point in the grid, and move to one of the eight neighboring states which

has the maximum value or staying at the current state itself. However, this resulted in states

either oscillating or getting stuck towards the end of the trajectories, which were generally of

short length (roughly 20-25 points by manual inspection). We tried fixing this by adding a

goal point with high reward. However this meant that we needed to run value iteration for

each synthetic trajectory, which took a lot of time. Hence, we dropped the idea and chose to

implement A*. This also lead to an interesting discovery about something we hadn’t thought

about explicitly before - the conventional planning algorithms, as well the reinforcement

learning algorithms based on value or Q function iteration, both solve an MDP, however, in

literature, the connection is generally not made.

The resulting value function after our implementation is given in Figure 1

Figure 1: Left: original cost map and right: value function post convergence

5.2.2 A*

A* is a standard path finding algorithm which builds upon the slow but guaranteed to return a

shortes path Djikstra, and the greedy heuristic based Best First Search algorithms. Specifically,

it finds a path that minimizes the following cost function f (n)

f (n) = g (n)+h(n)

Page 10 of 16



Final project 16-811: Math Fundamentals for Robotics

Here, g(n) is the cost function we define in the preceding sections, and h(n) is the heuristic,

which we chose to be the Euclidean distance in our case. A*, unlike value iteration, made it

easier to specify goal states. For each of the 10 gridworlds from our training set, we chose

start and goal states randomly, and generated 35 trajectories, as shown in Figure 2.

5.3 Feature selection

Choosing a good feature representation is essential for learning a reward function via MaxEnt

or MMP as the learnt reward is a weighted sum of the features themselves. As we also want to

capture the semantics, it’s intuitive to look at numbers corresponding to closest obstacles of

each class, or better still, a one hot encoding of classes. As our cost function is dependent on

1/x2 and has a "cut-off" condition which depends on x and a constant εk , it makes sense to

have numbers proportional to 1/x, 1/x2 and a bias term in the feature set, along with a one

hot encoding of the class type of the obstacle. To avoid division by zero, one would want to

use terms proportional to 1/(x +1) and 1/(x +1)2.

Initially, we tried using a feature set of three numbers : {1/(x1 +1),1/(x2 +1),1/(x3 +1)}

where xi is the distance from the nearest obstacle belonging to the i th class. However, it didn’t

perform well for obvious reasons : for example, if we’re surrounded by multiple obstacles

of the same type, we end up picking the feature corresponding to just one of them and

ignoring other nearby obstacles which have a lot more effect on the reward rather than

closest obstacles of the remaining classes which might be far-off and have a negligible or

minor contribution to the cost at the current state.

Therefore, we decided it’s better to consider N nearest obstacles( we chose N=5) and

encode their semantic class by a one hot feature. We settled on a set of 5 numbers for each

obstacles

[10/(x+1),10/((x+1)2),onehot1,onehot2,onehot3], and we have this set for the 5 closest

obstacles to a state. Finally we add a bias term. Therefore, our feature vector is vector of

length 5*5+1 = 26 numbers.

6 RESULTS

Figure 3 shows three examples from a total of ten cost maps that were used for training the

algorithm. Each figure contains 4 images (from left to right): the original cost map with expert

trajectories, the original cost map with obstacle locations, learned cost map using MMP and

learned cost map using MaxEnt.
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Figure 2: Left: Cost function with random obstacles of different classes, red being the deadliest,
followed by yellow and green in that order. Right: Synthetic expert trajectories generated using A*
algorithm. Starting at green and ending at red.

Figure 4 shows three examples from a total of five cost maps that were used when testing

the IRL algorithms on new scenarios, unseen during the training phase. Each figure contains

3 images (from left to right): the original cost map with obstacle locations, learned cost map

using MMP and learned cost map using MaxEnt.

As is evident, Maximum Margin Planning did a better job in approximating the true cost

function as compared to MaxEnt. MMP learns cost maps that are better localized and precise

than the one learnt from MMP in a sense that they are able to capture the position of the

obstacles quite accurately if we compare the local maximas with the true location of obstacles

(stars in 2nd column) but the cost function quickly degrades to zero as we get away from

them. Whereas in MaxEnt, we are able to capture the diffuseness of the true cost map but

the preciseness of the location of the obstacles isn’t recovered. It’s also worth pointing out

that the costmaps learnt via both methods are non differentiable in places due to the one hot

features.

6.1 Are we able to capture semantics?

To address this question, we must analyze the learned weights. Before we do that, let’s recall

some facts:

• Our feature vector is composed of 26 numbers - 5 numbers each for each of the 5 closest

obstacles from the state in question.
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Figure 3: Results on training data. From left to right : Expert demonstrations overlaid on the input
costmap; input costmap along with obstacles; learnt cost map via Maximum Margin Planning; and
finally learnt cost map via Maximum Entropy IRL

• First three are a one hot encoding of the obstacle class and last two are inversely

proportional to distance and squared distance from that obstacle.

• From Table 1, we can see that the zero out distance, εk for the green class is the highest,

but the weight, wk is the lowest.

Taking into account the above three points, one can say that for the obstacles closest to

the state, the one hot feature corresponding to red class should be highest followed by yellow

and green. However if we consider the 4th and 5th closest obstacles, the one hot features

corresponding to the green and yellow classes should be higher. Figure 5 shows the learned

weights.

MMP seems to be able to learn weights corresponding to the one hot features (yellow

circles) which match our expectations just discussed. However as we go from the closest to the
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Figure 4: Results on test data. From left to right : Input costmap along with obstacles; learnt cost map
via Maximum Margin Planning; learnt cost map via Maximum Entropy IRL

farthest of the five obstacles considered (left to right) in the figure, the weights proportional

to the inverse of distance and squared distance features (purple dots) don’t always follow the

expected pattern.

The Maximum Entropy IRL method, while capturing the obstacle locations at a coarser

level, was unable to capture the finer semantics about the different class costs.
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Figure 5: Learnt weights for our feature vector. From left to right, each X coordinate represents the
one hot feature encoding (Red, Green, Yellow) of the obstacle class (3 numbers), then 2 numbers
correspond to features 10/(x +1) and 10/(x +1)2, and this repeats for 5 closest obstacles to give a total
of 25 features. The last number (26t h) is the feature value corresponding to the bias term.

7 CONCLUSIONS

In conclusion, both IRL methods successfully recovered the original location for objects and

original cost maps for the training examples, and generated acceptable cost maps for the test

scenarios. The MMP method generated smoother cost maps than MaxEnt, where the spacial

discontinuities created by the feature vector we used were not so evident.

Future work can be grouped twofold. First, we can use deep methods that create the

cost maps based on a non-linear combination of features (unlike the linear combination we

obtained with the current methods), and check if that generates a better approximation for

the original cost maps. Second, this outputted cost map can be tested as input for the motion

planner of a real physical system, and its performance can be compared with that obtained

with other techniques used for semantic obstacle avoidance, such as hard-coded rules.
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