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I. INTRODUCTION

In this project, we explore the potential of the
Bingham distribution in localization and mapping
approaches. Namely, this includes (i) the formulation
of uncertainty over SO(3) via the Quaternion Bingham
Filter (QBF) (ii) an investigation into surface normal
segmentation with a Bingham Mixture Model, akin to
previous work in global scene segmentation [1].

Rotational data is frequently encountered in robotics,
however most existing methods make a Gaussian
assumption on uncertainty. The goal of this project
is to explore a suitable alternate assumption on
noise - the Bingham distribution. To this effect, we
introduce the quaternion Bingham process model,
which can be further studied in [2]. Given 3-D
rotational data, we investigate a filtering method where
the dynamics/measurements are affected by random
Bingham distributed noise. This represents an ideal
combination of elements - while the quaternions
provide a minimal representation of orientations sans
degeneracy, the QBF allows for very precise tracking
in the presence of large disturbances. Such a method
has been shown to have lower tracking error than the
Extended Kalman Filter (EKF) for dynamic states.

Section IV discusses the theory and implementation
of such a filter, and evaluates it on a synthetic dataset
we collect that possesses the rotational characteristics
we so desire.

Secondly, we wish to investigate the segmentation
of surface normals using a Bingham Mixture Model
to capture global scene segmentation, inspired by [1].
While [1] introduced a Dirichlet Process over the
von-Mises-Fischer distribution for global segmentation,
intuitively a Bingham Mixture Model is a much
simpler way to accomplish the same. Modeling surface
normals as quaternions, and segmenting based on
directionality seems like an ideal use case for the
Bingham distribution.

Section V describes surface normal segmentation
performed in [1], and attempts to perform Bingham
clustering of normals obtained in Kaess’ [3] planar
SLAM pipeline. Potentially, this could lead to the
representation of a Bingham distribution over S3 to
model the uncertainty over the quaternion representation
of planes introduced in [3]. In the iSAM based factor
graph formulation of planar SLAM, this boils down to
a change in the measurement model of planes from a
Gaussian in the tangent space of S3 at the linearization
point to a Bingham over S3 itself.

While our results are not significant, they do enforce
the validity and scope of the Bingham distribution in
robotics. As section II discusses, this niche body of
work has grown in significance in recent years. We
constantly revisited and re-framed our goals in this
project due to implementational difficulties, however
our learnings and takeaways have been rather significant.

In general [4], [5] are great resources to understand
the Bingham distribution and mixture models over them.

II. RELATED WORK

A. Filter-based approaches

The Bingham distribution stems from the work of
Bingham [6], where he parameterizes the distribution
with a concentration matrix Z and orientation matrix
M. We maintain the same naming conventions in this
report. He also elucidates on a numerical example of
the same from the domain of geology.

Glover et al. [2] uses two version (first-order and
second order) of a QBF to track a ping-pong ball. He
further establishes the lower tracking error of the QBF
has compared to the EKF. Kurz et al. [7] presents a
recursive implementation of the Bingham filter in two
dimensions, and evaluates it on simulated data.

The implementational tools in MATLAB/C++ stem
from the work of the above two authors -



1) The Bingham Statistics Library (from Glover) pro-
vides a framework for implementation of Bingham
distributions on unit spheres S1, S2, and S3.

2) libDirectional, from Kurz et al. [8], is a library
for directional statistics as well as recursive
estimation on directional manifolds.

Kaess et al. [3] proposed a planar SLAM formulation
which models planes as quaternions. It also establishes a
minimal representation for plane parameters. We briefly
discuss the application of Bingham statistics in such a
planar SLAM formulation in section VI.

B. Scene segmentation

Kaess’s approach to plane segmentation borrows from
Holz et al. [9]. Surface normals are extracted by tak-
ing the cross-product of vectors tangential to the local
surface. Points are clustered in normal space to get a
set of planes, which are merged if they show similar
local surface normals. An alternate method of plane
segmentation is presented by Straub et al. [10]. While
they propose a von-Mises-Fisher distribution, they actu-
ally approximate it with a Bingham distribution in their
calculation of posterior of global segmentation, as shown
in Fig of [11]. This is a more mathematically sound
way to cluster the data, readily generalizable to higher
dimensions. This segmentation is then incorporated into
semi-dense SLAM.

III. THEORY

A. The Bingham Distribution

The Bingham Distribution is an antipodally-
symmetric probability distribution, by taking into
account the facts that the mapping from quaternion
to the rotation space is two to one and that
antipodal quaternions (q,−q) represent the same
3-D rotation/orientation on a unit hypersphere.

It is derived from a zero-mean Gaussian on Rd+1, con-
ditioned to lie on the surface of the unit hypersphere Sd .
Thus, the Bingham’s probability density function (PDF)
is proportional to the PDF of a zero-mean Gaussian,
but it differs from the Gaussian in its normalization
constant. it is intuitive to use it to represent uncertainty
over the rotation space along with unit quaternions. One
could also consider a hemisphere of S3 and use another
distribution like Von Mises-Fisher, for instance, to model
the rotation space; however it is convenient to consider
the whole hypersphere coupled with a Bingham and not
bother with the discontinuities at the equator. Here, it
is worth mentioning that the VMF distribution is also
a maximum entropy distribution over a hypersphere,
and it could be a viable avenue for modeling rotations.

Mathematically, the Bingham distribution is represented
as:

f (x;Λ,V ) =
1

F(Λ)
exp{

d

∑
i=1

λi(vi
T x)2} (1)

=
1

F(Λ)
exp{xTV ΛV T x} (2)

where x is a unit vector on the hypersphere Sd , Λ

is a d × d diagonal matrix of concentration parame-
ters λ1 ≤ λ2 ≤ ... ≤ λd(≤ 0), V is the matrix of the
eigenvectors(v1,v2, ...,vd) of the distribution, and F is
the normalization constant. The (d + 1)th eigenvalue
λd+1(and its corresponding eigenvector vd+1) are omit-
ted by adding −λd+1 to all eigenvalues, without affect-
ing the distribution.

Fig. 1: Bingham distribution on S2, as taken from [4].
We see the mode and two orthogonal vectors in this
graphic, along with the concentration densities on the
hypersphere.

In figure 1, we see an example of a Bingham
distribution in 3-D on the sphere S2. In this example,
λ1 < λ2 < 0, and so the distribution is more spread out
in the direction of v2 than it is along v1. Unlike the
Gaussian distribution (which has one mode), we have
already seen that the Bingham distribution has at least
two modes, M and -pt. In fact, the Bingham can also
have infinitely many modes!

If one or more of the λi’s in equation 1 is zero, then
any x ∈ Sd in the subspace spanned by µ and the vi’s
with λi = 0 will also be a mode of the distribution.
As an extreme example, if all of the λi’s are zero,
then every x is equally likely, which means that the
distribution is uniform. If only some of the λi’s are zero,
then the distribution will have rings of equal probability
around the hypersphere, as shown in figure 2. For the
ones who are familiar with the mulitvariate Gaussian
distribution will recognize the exponent of equation
2 as the exponent of Gaussian in information form,
where the information (inverse covariance) matrix has



Fig. 2: How the Bingham distribution appears when you vary one of the concentration parameters to 0. [4]

been decomposed into its eigenvector and eigenvalue
matrices, V and Λ, and where the Bingham exponent
is missing a factor of − 1

2 ,which is moved into the
Bingham’s normalization constant. Also missing are the
(d+1)’st eigenvector and eigenvalue, vd+1 and λd+1. This
is because one can add a constant, ε , to all of the
original (d + 1) λ ’s and obtain the same PDF (up to
a proportionality constant, which will be compensated
for in the normalization term, F):

exT V (Λ+εI)V T x = exT V ΛvT x+xT V εIV T x = exT V ΛV T x+εxT x

= exT V ΛV T x.eε

B. Quaternions

There are various ways to represent SO(3) including
Euler angles, rotation matrices, axis-angle representation
and unit quaternions, and all of them have their pros
and cons. However, we choose quaternions as they
are: (a) not as ambiguous as Euler Angles apart from
antipodal symmetry, (b) do not suffer from the Gimbal
lock problem, (c) easier to compose as compared to
the axis-angle representation, and (d) allow for faster
computation. For our case, an even stronger motivation
for using quaternions is that the Bingham distribution
captures the antipodal topology of the quaternion space
perfectly. To top that, the Bingham is a member of
the exponential family and is the maximum entropy
distribution on the hypersphere [4]. There has been a
recent surge of interest in and the revival of Binghams
due to the Glover’ s work [4] and they provide a
promising model for rotational uncertainty.

IV. THE QUATERNION BINGHAM FILTER

A. Description

An in-depth treatment of the quaternion Bingham
filter (QBF) can be found in [2]. Here we will expand the
theory around only the discrete-time first-order quater-
nion Bingham filter.

Fig. 3: The first-order discrete quaternion Bingham
process depicted in graphical model form, from [2]

In the case of a first order discrete time quaternion
Bingham process, the state at time n is a unit quaternion
xn. Further, the control input at that timestep, un, is a unit
quaternion as well. One can obtain the next state xn+1
as the previous state, rotated by the control input. The
observations at each timestep yn are the states corrupted
with system disturbance. In our case the noise comes
from an independent Bingham distribution.

The second-order quartenion Bingham process has
state (xn,vn),where xn represents orientation and the
quaternion vn represents discrete rotational velocity at
time n2. The control inputs un are analogous to rotational
accelerations. Process noise wn enters the system in the
velocity dynamics.

For notational clarity, xn = wn ◦ un ◦ xn−1 represents
composition of rotations. The state equations, with the
graphical model for the first order process can be seen in
Figure 3. [2] also elucidates on the second-order filter,
which we will not include in our implementation.

The QBF is recursive in nature, similar to the Bayes
filter that we have studied in class. Its state distribution is
projected into the Bingham family after each time step.
The derivation for the first-order filter bears resemblance
to that of the Kalman filter. We have an initial state
distribution on x0, Bx0 = Bingham(Z0,M0). We wish



to compute the posterior f (xn|u1,y1 . . .un,yn) given the
observations y1 . . .yn and control inputs u1 . . .un. In the
manner familiar to us, we proceed to apply the Markov
assumption and Bayes’ rule -

Bxn = f (xn|u1,y1, . . . ,un,yn)

∝ f (yn|xn) f (xn|u1,y1, . . . ,un1,yn1,un)

∝ f (yn|xn)
∫

xn−1

f (xn|xn1,un)Bxn1(xn1)

∝ f (yn|xn)( fwn ◦un ◦Bxn1)(xn)

To evaluate the first term f (yn|xn), we use the equation
yn = zn ◦xn. This is nothing but a Bingham defined by -

yn|xn ≈ Bingham(yn;Zo,Mo ◦ xn)

B. Experiments and Results

Synthetic data generation: We evaluate our filter
on quaternions generated in simulation. We generate
controls for a fixed frame to gradually precess, based
on an input spin rate and precession rate. We selected
such a pattern, as it covers a wide range of rotations
- suited well for application of a Bingham Filter. The
pattern of the ground-truth synthetic data can be seen
in Figure 4. The video of the same can be viewed here.

The initial state of the filter is set with the below
parameters -

M =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 Z =


−1
−1
−1
0


We then add Bingham distributed system noise

B sys, with parameters -

M sys =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 Z sys = 104×


−5
−5
−5
0


We perform a stochastic sampling from this

distribution via Kent’s method [12] to give us the noisy
terms.

We model the known system disturbance into our
QBF, and predict and plot the rotation at each time step.
We have generated similar plots for our filter results,
which shows accurate tracking. In Figure 5, we see the
imperfect plot generated by the raw noisy values. The
recovered plot resembles the ground truth. A video of
the same can be seen here. Our Bingham filter was
created with the libDirectional library for MATLAB [8].

V. BINGHAM NORMAL SEGMENTATION

Inspired by the results of Straub et al.’s work on
Direction-Aware SLAM [1] and in formulating and
capturing a generative model of surface normals in
indoor scenes [11], we wanted to investigate the
effectiveness of using a mixture model over Bingham
distributions to do similar tasks. Straub uses a Dirichlet
Process over the von Mises Fischer distribution in S2

for both tasks.

Antipodal surface normals are different and we
wouldn’t want to use a Bingham over S2 to capture
such data. However, we can augment surface normal
data and move it to S3 by making pure quaternions
(real part is zero) out of them.

We tried two methods for segmenting normals
with Bingham mixture models. A Bingham Mixture
Model (BMM) is akin to a Gaussian Mixture Model,
and is nothing but a weighted sum of Binghams,
p(x,BMM,α) = ∑

k
i=1 αi p(x,Bi) [5]. Intuitively, a BMM

over S2 is not ideal for fitting a mixture model over
surface normals, as antipodal data points over S2 are
different normals.

We made pure quaternions from the surface normal
data obtained from frames of Kaess’ staircase dataset
from [3] by simply using zeros as the real part of the
quaternion, and using the vector part as the surface
normal itself. Fitting a Bingham over S3 however didn’t
give ideal structures as can be seen in Figure 6. We
then tried fitting a BMM over S2 over the raw surface
normal data, the results of which can be seen in Figure
7 and this video.

Fig. 6: (a) Actual distribution of normals on a unit
sphere for frame 10 of the stairs dataset (b) Bingham
clustering for the same frame.

[5] introduced a simple RANSAC based method to
fit BMMs to data, where outliers are defined by a
probability less than the reciprocal of the surface area

https://www.youtube.com/watch?v=QL0ydF8f70U
https://www.youtube.com/watch?v=p3T20FVQptk
https://www.youtube.com/watch?v=oDX33XJYmdI


Fig. 4: Synthetic data, with axis points plotted over time. This is quat 0.001 0.3 0.03.csv in the data folder.

Fig. 5: Three images that show the results of the QBF. Each image consists of 4 subplots - TL: noisy quaternion
visualized. TR: filtered quaternion. BL: axes points over time for noisy quaternion BR: axes points over time for
QBF result

Fig. 7: Bingham clustering results for S2. The frame being reference, with the segmented planes in Kaess’ pipeline
are shown in figure 8

of the corresponding hypersphere. To fit a BMM, we
transcribed Glover’s C implementation of the BMM-
SAC algorithm to MATLAB and use it in conjunction
with libDirectional.

A. Reasons for Negative Results

1) BMM over S3: To fit the S3 BMM, we
call the bingham cluster() function from the file
bingham.c in Glover’s libbingham repo. The BMM-
SAC implementation in the above has a couple of
hyperparameters: the minimum number of points in

one component, and the minimum pdf of a quaternion
sample to be assigned to a specific component. It
could be that we did not tune this parameters enough
to get good results. Another reason could be that the
BMM-SAC is lacking in itself, and the community
needs to come up with a smarter algorithm, perhaps
something on the lines of Expectation Maximization
for fitting Gaussian Mixture Models.

2) BMM over S2: Using a BMM over S2 is flawed
by design, as there is no reason to have antipodal

https://github.com/SebastianRiedel/bingham/blob/master/c/bingham.c#L1638-L1696
https://github.com/SebastianRiedel/bingham/blob/master/c/bingham.c


Fig. 8: Plane segmentation in Kaess’ pipeine from
frame 500. From the image we can see two major
dominant planes, along with a third (light blue) one. Its
bingham clustering is shown in figure 7.

symmetry in S2 - normals pointing opposite to each
other most probably belong to opposite surfaces
(unless the respective points at which the normals were
evaluated were really close in R3 which is not the case
here). We however still proceeded with implementation
of the S2 BMM, driven by curiosity. As can be seen Fig
4 and the video linked in the previous paragraph, the
modes of the component do somewhat agree with the
distribution of the raw data - the two components of the
Bingham can be seen as representing the perpendicular
walls in the data. However, we are missing the 3rd
mode of the dataset, which corresponds to the floor.

For both S2 and S3, the data itself is noisy, which
could be another reason for the failure of fitting the cor-
rect mixture model in the absence of better algorithms
for the same.

VI. APPLICATION IN PLANAR SLAM

This final section discusses the application of the
Bingham distribution in Kaess’ SLAM formulation [3].
Planes inherently have only 3 degrees of freedom -
orientation can be modeled by two angles α and β , and
orthogonal distance to origin by d. However Kaess [3]
explains that this minimal representation has singular-
ities like Euler angles, which would lead to problems
in optimization. He proposes to model the plane with a
homogeneous vector π = (π1,π2,π3,π4) ∈ P3. Then, a
point p = (p1, p2, p3, p4) ∈ P3 -

π1 p1 +π2 p2 +π3 p3 +π4 p4 = 0

The above representation can be mapped to the stan-
dard plane equation in R3 [3]. We define the normal

vector, n = (π1,π2,π3)
T/
√

π2
1 +π2

2 +π2
3 and distance

from origin, d =−π4/
√

π2
1 +π2

2 +π2
3 . Then, the point

pxyz = (p1/p4, p2/p4, p3/p4)
T lies on the plane if:

nT pxyz = d

[3] establishes a minimal representation using the
above over-parameterized homogeneous representation
by simply normalizing it such that π lies on the unit
hypersphere in R4 : π ′ = π/‖π‖ ∈ S3. For optimization,
a minimal representation of SO(3), its lie-algebra is
used, which is essentially the set of skew symmetric
matrices over the 3-vector axis-angle representation of
rotations.

In [3]’s formulation, the uncertainty of the plane
zπ x measured from pose x is modeled by a zero-mean
Gaussian with a 3×3 covariance matrix Σ in the tangent
space:

πx = T−>gx π⊕ v, v∼N (0,Σ)

Here Tgx is the transformation matrix between the
global frame and frame corresponding to pose x (plane
measurements are relative). This means that the prob-
ability of a plane measurement π̂ given the actual
observation zπ x at a pose x is:

p(π̂|zπ x) =
1√

(2π)3 |Σ|
exp
(
−1

2

∥∥h(Tgx, π̂)	 zπ x
∥∥2

Σ

)
Following from [4], we define a base Bingham distri-
bution B0(Λ0,V0), which has its mode at the identity
quaternion:

V0 =


0 0 0
1 0 0
0 1 0
0 0 1

 Λ0 = diag(λ1,λ2,λ3)

Instead of having the mean at the sensor observation,
as one would do with a Gaussian, we need to pre-rotate
B0 accordingly with the observed planar measurement
quaternion, zπ x. [4], [2] define the pre-rotation of a
Bingham with a quaternion, which essentially is doing
quaternion pre-multiplication of each of the 3 eigen-
quaternions of B0 (columns of V0), which we denote by
Vp = zπ x ◦V0). Now if vq is a sample from this rotated
Bingham distribution, the predicted measurement, πx is
obtained by simply pre-rotating zπ x:

πx = vqzπ x vq ∼ Bingham(Λ0,Vp = zπ x ◦V0)

We can define the probability of a plane measurement
π̂ given the actual observation zπ x at a pose x as:

p(π̂|zπ x) =
1

F(Λ0)
exp
(

π̂
T (zπ x ◦V0) Λ0 (zπ x ◦V0) π̂

)



Fig. 9: Possible sensor models with concentration parameters, Λ = (a) (-30, -30, -600) (b) (-60, -60, -900) (c)
(-800, -800, -900), and eigen-quaternion matrix = V0 (defined in text). These plots are obtained by rotating the point
in cyan by 1000 quaternion samples from respective bingham distribution about the origin (center of the sphere).
As the cyan point is on the sphere, the resulting point will also lie on the sphere. According to [2]’s library, the
concentration params are defined in the range from -900 to 0. The less negative a concentration parameter, the more
is the uncertainty about the corresponding eigen-quaternion.

We visualize possible sensor models in Fig 9. To
visualize multiple quaternions, we pick an arbitrary point
on a 3-D sphere (shown in cyan), and rotate it about the
origin with 1000 quaternions sampled from the Bingham
sensor model and plot the resulting points (which would
still lie on the sphere) in black. This visualization is
inspired by the EGI plots of [13]. The cyan point can
be thought of as the unit normal vector of the planar
observation (with the distance to origin stripped off).

VII. CONCLUSION, FUTURE WORK,
LEARNINGS

The Bingham distribution has a great use case in
the interesting problem of modeling uncertainty over
the manifold of rotations in SLAM. Recent work in
segmentation and filtering has buoyed interest in such
representations in the field of robotics.

Future work include the testing of our QBF on
real-world data. Some possible options come to mind,
such as initially testing it out on a challenging sequence
from the EuRoC dataset [14]. We believe that the filter
can find a very good use case in state estimation for
drones, and running it onboard would be the ideal end
goal.

Upon correcting the issues in our normal clustering
(section V), we wish to perform plane segmentation
and compare our results with that of Kaess et al. [3].
This will allow us to confirm if a distribution on a
hypersphere is the best way of characterizing planes.

There were significant learnings from the project -
• Making the QBF meshed right into the course,

where the EKF was handled in detail

• It was very interesting trying to formulate un-
certainty in a manner different from the standard
Gaussian methods.

• In order to come up with an alternate formulation
for the planar SLAM problem, we gained a great
understanding in Kaess’ work on infinite planar
SLAM [3].

• We also stumbled onto a lot of very impressive
work from Julian Straub, one of our main moti-
vations for going forward with this project.

• Our reading list lists papers from all the above
authors.

REFERENCES

[1] J. Straub, R. Cabezas, J. Leonard, and J. W. Fisher III,
“Direction-aware semi-dense slam,” arXiv preprint
arXiv:1709.05774, 2017.

[2] J. Glover and L. P. Kaelbling, “Tracking 3-d rotations with the
quaternion bingham filter,” 2013.

[3] M. Kaess, “Simultaneous localization and mapping with infinite
planes,” in Robotics and Automation (ICRA), 2015 IEEE Inter-
national Conference on, pp. 4605–4611, IEEE, 2015.

[4] J. M. Glover, The quaternion Bingham distribution, 3D object
detection, and dynamic manipulation. PhD thesis, Massachusetts
Institute of Technology, 2014.

[5] J. Glover, “Monte carlo pose estimation with quaternion kernels
and the bingham distribution,” 2012.

[6] C. Bingham, “An antipodally symmetric distribution on the
sphere,” The Annals of Statistics, pp. 1201–1225, 1974.

[7] G. Kurz, I. Gilitschenski, S. Julier, and U. D. Hanebeck, “Recur-
sive estimation of orientation based on the bingham distribution,”
in Information Fusion (FUSION), 2013 16th International Con-
ference on, pp. 1487–1494, IEEE, 2013.

[8] G. Kurz, I. Gilitschenski, F. Pfaff, and L. Drude, “libdirectional,”
2015.

[9] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke, “Real-time plane
segmentation using rgb-d cameras,” in Robot Soccer World Cup,
pp. 306–317, Springer, 2011.

[10] J. Straub, J. Chang, O. Freifeld, and J. Fisher III, “A dirichlet
process mixture model for spherical data,” in Artificial Intelli-
gence and Statistics, pp. 930–938, 2015.

https://github.com/SebastianRiedel/bingham
https://docs.google.com/document/d/1ODcRA0BzdUsEjrfW5u3LYnousWXO8QXQg8IriTEIctI/edit?usp=sharing


[11] J. Straub, G. Rosman, O. Freifeld, J. J. Leonard, and J. W. Fisher,
“A mixture of manhattan frames: Beyond the manhattan world,”
in Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pp. 3770–3777, IEEE, 2014.

[12] J. T. Kent, A. M. Ganeiber, and K. V. Mardia, “A new method
to simulate the bingham and related distributions in directional
data analysis with applications,” arXiv preprint arXiv:1310.8110,
2013.

[13] S. Riedel, Z.-C. Marton, and S. Kriegel, “Multi-view orienta-
tion estimation using bingham mixture models,” in Automation,
Quality and Testing, Robotics (AQTR), 2016 IEEE International
Conference on, pp. 1–6, IEEE, 2016.

[14] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The euroc micro aerial vehicle
datasets,” The International Journal of Robotics Research, 2016.


	INTRODUCTION
	RELATED WORK
	Filter-based approaches
	Scene segmentation

	THEORY
	The Bingham Distribution
	Quaternions

	THE QUATERNION BINGHAM FILTER
	Description
	Experiments and Results

	BINGHAM NORMAL SEGMENTATION
	Reasons for Negative Results
	BMM over S3
	BMM over S2


	APPLICATION IN PLANAR SLAM
	CONCLUSION, FUTURE WORK, LEARNINGS
	References

